If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^2-3T-4=(T+2)(T+7)
We move all terms to the left:
^2-3T-4-((T+2)(T+7))=0
We add all the numbers together, and all the variables
-3T-((T+2)(T+7))=0
We multiply parentheses ..
-((+T^2+7T+2T+14))-3T=0
We calculate terms in parentheses: -((+T^2+7T+2T+14)), so:We add all the numbers together, and all the variables
(+T^2+7T+2T+14)
We get rid of parentheses
T^2+7T+2T+14
We add all the numbers together, and all the variables
T^2+9T+14
Back to the equation:
-(T^2+9T+14)
-3T-(T^2+9T+14)=0
We get rid of parentheses
-T^2-3T-9T-14=0
We add all the numbers together, and all the variables
-1T^2-12T-14=0
a = -1; b = -12; c = -14;
Δ = b2-4ac
Δ = -122-4·(-1)·(-14)
Δ = 88
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{88}=\sqrt{4*22}=\sqrt{4}*\sqrt{22}=2\sqrt{22}$$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{22}}{2*-1}=\frac{12-2\sqrt{22}}{-2} $$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{22}}{2*-1}=\frac{12+2\sqrt{22}}{-2} $
| -2x=(-10) | | 78=1/2x+(x−6) | | (3x-4/18)+x=(3x+4/3)+1 | | 1/4(4c-24)=8+c | | 84=6(3p-1) | | D=4/7(f-G) | | 16=4^y | | 4x+5/9=-7 | | 4x-4=-12(4x-1/3) | | 1/2x=(-10) | | 10x^2–110x+70=2x^2–x+5 | | -6(x+5)-12=10+2 | | 7k-8k=6 | | 3*(2x-5)+4x=5*(x-3)+27 | | -25(10-x)=25x+1 | | 2/3=12/x+2 | | 10x2–110x+70=2x2–x+5 | | 60+2y+30=90 | | 5(x+2)+5=5x+8 | | x×20=8×7.5 | | -250+25x=25x•250 | | 3x^2+25+28=0 | | x/4=(-3) | | (4/7)+(b/4)=(7/12) | | 13x+41=-3 | | 4/7+b/4=7/12 | | 5t×2=9 | | 3/6n+9/10=-1/5n-23/10 | | 8(7-2y)+7y=11 | | 14x+10=14x+10 | | (2x-3/8)+x=(2x+3/2)+1 | | 3.5(t-6)=7 |